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A zero-order model is presented, which allows calculation of the stress distribution in
porous epoxies by taking into account the interaction between randomly distributed voids.
These results demonstrate that the mean value of the stress concentration factor increases
with the volume fraction of voids. This leads to a decrease in sample yield strength.
However, the generation of a porous morphology also creates a considerable number of
regions where the stress is completely released. The theoretical predictions are in good
agreement with experimental results obtained with macroporous epoxies, which were
prepared based on the chemically induced phase separation technique, and tested under
uniaxial compression. © 17998 Kluwer Academic Publishers

1. Introduction

Voids often develop during the synthesis and process-
ing of metals, ceramics, polymers and composites.
These isolated pores are usually regarded as in-
homogeneities, which act as stress concentrators and
consequently initiate plasticity or failure in materials.
Thus the presence of such voids causes severe prob-
lems concerning the reliability of mechanical proper-
ties, such as the toughness, modulus and yield
strength. A completely different behaviour might re-
sult, if the voids are numerous, have a very uniform
size, and are randomly dispersed in an isotropic
matrix in such a manner, that the resulting stress fields
can interact. The development of such a morphology
has been recognized in highly cross-linked polymers,
where a dispersed phase is able to cavitate during
deformation [1-10]. This cavitation is accompanied
by the extensive formation of shear bands, which leads
to energy absorption and consequently a higher
toughness. Even though the incorporation of second-
phase particles is a well established method to increase
the toughness of otherwise brittle thermosets [11-14],
there still exists a controversial discussion, whether
the cavitation is only a side symptom [15,16], or if it is
at the origin of the shear banding [1,4-6,9,17]. Nu-
merous experimental observations confirm the latter
hypothesis.

The understanding of the cavitation process be-
comes crucial to develop new materials, combining
high specific properties with increased toughness. The
nature of second-phase particles does not always seem
to play the predominant role for toughening. A wide
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variety of thermoplastic or rubbery particles, that are
generated via reaction-induced phase separation are
mostly used for these purposes [98,11-14]. The de-
sired toughening effect can also be achieved by using
highly branched polymers, phase separating to disper-
sed domains [18] or alternatively by blending with
a wide variety of core shell particles [19]. However,
the size and distribution of the second phase seems to
be crucial for effective toughening. Several groups
observed that no toughening occurs if the second-
phase particles are smaller than 200 nm [5, 7]. Theor-
etical calculations have shown that this is a lower
critical size to induce cavitation [20] and that
a cavitated particle can generally be considered as
a void [21,22]. Multiple cavitation is equal to the
generation of a series of voids. Hence, several attempts
have been made to simulate such a morphology by
using either a non-reactive rubber [ 17] or hollow latex
spheres [23,24] as the dispersed phase. Based on the
theoretical predictions and the experimental results, it
was concluded that voids are able to toughen epoxies
in the same manner and in the same magnitude as
rubber particles. Furthermore, the contribution of the
plastic void growth, succeeding cavitation, to the total
toughness can become as important as shear band
formation, especially at elevated temperatures [25].
Furthermore, it has been observed that rubber par-
ticles become ineffective in toughening if the cavita-
tion is suppressed under a hydrostatic pressure [26].
Consequently, cavitation has been regarded as a pre-
requisite for toughening. However, rubber-toughened
materials can undergo plasticity without cavitation at
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low strain rate or high temperature [21,22]. Hence
rubber particles or voids must be seen as stress pertur-
bators. According to the concept of Wu [27], the
toughening depends not on the size of the particles,
but on the interparticle distance. A substantial in-
crease in toughness is only achieved if the interparticle
distance becomes lower than a critical value. Later,
this model has been refined by the same author sup-
posing a percolation of matrix ligaments with a criti-
cal size, wherein shear bands are able to form [28].
Both explanations imply that the particles must be
able to interact.

Very recently, a further interesting observation has
been reported, which also suggests the importance of
cavitation for toughening. Similar to the transforma-
tion-induced toughening, which is widely used for
ceramic materials, Karger—Kocsis has tried to in-
crease the toughness of polypropylene by the incorpo-
ration of crystalline particles which will undergo
a phase transition during deformation [29,30]. Con-
versely to the observations reported for ceramics, the
toughness does not increase if this phase transition is
accompanied by a volume increase, thus creating
a compression field around the crack tip. However the
toughness increases, if a volume contraction occurs.
This process might be very similar to cavitation.

All the above considerations lead us to the idea of
preparing macroporous thermosets having closed
pores with sizes and distributions in the micrometre
range similar to those commonly used for toughening
with rubber or thermoplastic particles. Therefore, we
have developed a new technology, termed chemically
induced phase separation (CIPS), because the genera-
tion of the desired morphology is governed by a phase
separation process resulting from a chemical quench
[8]. In this strategy, the epoxy precursor and curing
agent are cured in the presence of a low molecular
weight liquid, which should turn into a non-solvent
upon curing, thus initiating a phase separation. This
process should result in the formation of liquid drop-
lets, spherical in shape due to thermodynamic reasons.
The generation of a porous morphology is sub-
sequently achieved by diffusion of the liquid through
the cross-linked matrix without any alteration in the
size and distribution of the dispersed phase [31-34].
This new type of macroporous thermoset is character-
ized by a very narrow size distribution in the micro-
metre and a significantly lower density without any
lowering in thermal stability. The first experimental
results demonstrate the general feasibility of the CIPS
technique to prepare solvent-modified epoxies with
a substantial increase in fracture energy of around
400% [35].

It is the purpose of this paper to present calcu-
lations of the stress distribution in porous thermosets
and compare these results with the deformation be-
haviour of macroporous epoxies which were prepared
via the CIPS technique and display a morphology
which is close to the theoretical simulations. Recently,
the stress distributions of a limited number of spheri-
cal inclusions, being either rubber or voids, in an
isotropic epoxy matrix were calculated based on
a finite element model [36,37]. It was concluded that
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the effect of voids or a rubbery phase is very similar.
These inclusions will release the triaxial stresses at the
crack tip. Even though this model has allowed predic-
tion of the possibility of void toughening (as proved
later experimentally with one single psueudo-porous
system [17]), the finite element approach does not
allow the multiple interactions between randomly dis-
tributed voids to be taken into account. Therefore, our
approach starts with a zero-order approximation of
the stress interaction as explained below.

2. Interactions between spherical voids

in an elastic matrix: A zero order model
2.1. Principle of the computations
The spherical inhomogeneities are randomly placed in
a linear isotropic elastic matrix. The computation is
based on the superposition of mechanical fields. Each
of these fields is obtained from Eshelby’s solution
[38,39] for the problem of an elastic infinite matrix
containing elastic ellipsoidal inhomogeneities. This
method based on the strain tensor inside the in-
homogeneities is analogous to the equivalent inclu-
sion method based on the stress tensor inside the
inhomogeneities, using the zero-order expansion of
the Taylor series describing the eigenstrain inside the
inhomogeneities [40]. In our case (in order to simplify
the software) we have considered spherical in-
homogeneities so that all functions can be analytically
computed and the system of coordinates has the same
angle for all inhomogeneities. As the solution for
a spherical inhomogeneity leads to a uniform strain
tensor in the inhomogeneity, the solution involves the
superposition of uniform strain tensors inside the in-
homogeneities. The strain or stress values inside the
inhomogeneity are then composed of a constant value
in addition to the perturbations arising from the
neighbouring inhomogeneities.

In order to obtain a linear system of equations
describing the mechanical interactions, one considers
the remote uniform strain of the matrix around each
inhomogeneity. The six components of this remote
strain tensor are then the unknowns attached to each
inhomogeneity. The main effect on the solicitation of
each inhomogeneity arises from the external loading.
The local perturbation to this “mean field” is due to
the interaction with the neighbouring inhomogeneities
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Figure 1 Effect of the p inhomogeneity on the s inhomogeneity. The
component i of the remote strain tensor &i"' acting on p induces
a mean strain in the area occupied by s. The coefficient of influence
og; is attached to the component k of this mean strain tensor acting

on s.



(Fig. 1). Of course this scheme is expected to give
imprecise results when the inhomogeneities are very
close to each other. Indeed, in such cases these
perturbations vary considerably within the volume
occupied by the inhomogeneity and thus cannot be
considered almost uniform (zero-order approxima-
tion). It is expected that the zero-order approximation
will give good results if the distances between in-
homogeneities are relatively large. This will be
checked below.

The six unknowns per inhomogeneity are then com-
puted from the following system of equations

6 n,
="+ ) one (1)
1

k=1ls=1,s#p

where n, is the number of inhomogeneities, € is the
component i of the strain tensor applied at infinity,
ef is the component i of the strain tensor acting on the
p inhomogeneity considered alone in an infinite
matrix, g; is the component k of the strain tensor
acting on the s inhomogeneity considered alone in the
same infinite matrix, af; represents the perturbation
on g, arising from the presence of p at the centre of the
location of s. The coefficient of influence, of; is analyti-
cally known for spheres [41,42]. Once the solution is
obtained (ef, €}, ...) the stresses, strains and displace-
ments can then be calculated (as in a boundary ele-
ment technique) by superposition of the effects of
(€, &, ...), using Eshelby’s solution for an inhomogene-
ity in an infinite matrix.

Each inhomogeneity has its own characteristics
(elastic moduli, location and radius). For the sake of
simplicity, in the following examples all the in-
homogenetities have the same radius. As we were
interested in porous materials, all inhomogeneities are
voids. In fact, for numerical reasons, the Young’s
moduli of the inhomogeneities were set to be 10~°
times the Young’s modulus of the matrix, which leads
to the quasi exact situation of voids in the matrix.

2.2. Validations and limits of the zero-order
approximation
It is obvious that the solution obtained by this proced-
ure is exact for one inhomogeneity in an infinite
matrix, but, as explained above, the zero-order ap-
proximation is expected to give imprecise stress con-
centration factors if several inhomogeneities are close
together. To check the accuracy of the zero-order
approximation it is necessary to compare results in
cases of known solutions obtained by other tech-
niques. Very few analytical results are available in the
literature and generally the entire mechanical field is
not explicitly given. The most convenient technique to
obtain comparable fields would certainly be the
boundary element technique. Nevertheless, we have
used a finite element software applied to two-dimen-
sional axisymetrical geometries. Once comparable
fields are given, a criterion for the quality of the
solutions must then be defined. We have chosen to
compare the strain field and to evalute the difference
between the two strains relative to the applied strain

amplitude at infinity (the greatest value of ;). One of
the most imprecise results is given in the case where
inhomogeneities are voids, in triaxial tension or com-
pression and for only two voids. In this case, the
neighbouring voids imbalance the strains in such
a way that they cannot be counterbalanced by a zero-
order distribution of strains. Two voids of the same
radius separated by a distance of one radius is the
geometry shown in Fig. 2. The finite element software
was ABAQUS/Standard® version 5.3. The mesh was
axisymetric around the y-axis, symmetric to the x-axis
and composed of six-node triangles. The cylinder con-
taining the two spheres of radius r was of radius 4r and
height 24r in order to approach as closely as possible
the case of two spheres in a infinite medium. This mesh
allows three cases to be studied uniaxial tension of
axis y, bi-axial tension of axis x and z, and tri-axial
tension.

The strains along four axes (x =0,x =r,y =0,y =1/2)
are plotted in Fig. 3 in case of a triaxial strain of
amplitude 1%. The maximum difference between the
results from finite element and the present technique is
encountered at the middle point between the voids.
The error there is 27% of the applied strain “at infin-
ity”. In this zone, the strains seems to be overestimated
by the present technique, i.e. the unloading in this zone
due to the presence of two voids is underestimated.
But we will focus our further discussions on strain and
stress concentrations which are encountered in the
vicinity of the voids. The strain fields around the voids
have been computed for three different types of load-
ings at infinity: uniaxial tension, bi-axial tension and
tri-axial tension (Fig. 4). The difference between the
strain concentration factors is approximately 11%.
We have then concluded that the separating distance
between the spheres should not be lower than one
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Figure 2 Mesh used to compare the strains obtained with finite
element (axisymetric 6 node triangles, 1818 nodes) with those
obtained with the present technique.

3977



At infinity e, = ¢,

4] xfr

=g,=1 Vi =0 3

Figure 3 Strains along four axes for the geometry of Fig. 2: (a) x = 0, (b) x =r,(c) y = 0, (d) y = r/2. The results from finite element (symbols)
are compared to those from the present technique (lines): () ey, () ey, (V) ey, (A)es..

radius for spheres of the same radii to avoid any
significant error of more than 10% in comparison
with the applied load.

3. Preparation of macroporous epoxies
via chemically induced phase separation
(CIPS)
3.1. Materials
Bisphenol A diglycidylether (DER332 from Fluka)
and 2,2-bis(4-amino-cyclohexyl) propane (HY2954
from Ciba-Geigy) were used as the precursors to build
the epoxy network. Cyclohexane was purchased in
analysis grade.

3.2. Experimental procedure

Macroporous epoxies were prepared according to the
chemically induced phase separation technique as de-
scribed below. First, the bifunctional epoxy precursor
was mixed at room temperature with the tetrafunc-
tional diamine in a stochiometric ratio of 2: 1 together
with the desired amount of cyclohexane. This homo-
geneous mixture was transferred into glass tubes,
5 mm diameter, which were sealed at one end and
immersed into liquid nitrogen. This system was then
connected to a vacuum pump. A closed system was
realized by sealing the tube at the other end with
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a heating gun. The tube was consequently removed
from the liquid nitrogen and allowed to heat in a sili-
cone oil bath at 60°C, thus allowing for effective hom-
ogenization. The closed tubes were then put in
a preheated oven and cured at T = 80°C for 16 h. The
samples were then removed out of the glass tubes and
heated stepwise at 20K h™! to 200°C for an addi-
tional 120 h to allow for complete solvent removal and
full cure.

3.3. Characterization methods

The sample morphology has been investigated with
scanning electron microscopy on a Cambridge S100 at
an accelerating voltage of 10 kV. The samples were
immersed in liquid nitrogen and then fractured with
a razor blade (to avoid plastic void growth, otherwise
resulting in a change of the size and shape of the voids)
and the fracture surfaces were coated with gold, ap-
proximately 100nm thick, with a Bio Rad coating
apparatus.

The mechanical studies were performed on cylin-
drical samples of 5mm diameter and around
15-20 mm in length, machined from the macroporous
epoxies. These specimens were tested under compres-
sion on a UTS 100 universal testing machine with

a constant deformation rate of 10~ %s ™1,
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Figure 4 Strain around a void for the geometry of Fig. 2 and for (a) uniaxial, (b) biaxial and (c) triaxial tension. The results from finite element
(symbols) are compared to those from the present technique (lines). () e, (O) ey, (A)e.., (V) ey,

4. Application of the zero-order strain
interaction model to porous materials

4.1. Spatial distribution of spheres
We considered in our computations an infinite matrix
containing voids of the same radii. Each centre of
a void of radius r was randomly placed (by a com-
puter) in a definite volume, in respect of a minimum
distance [,,;, = r to the voids placed before. In order to
avoid border effects, only a central volume of the total
void containing volume was treated with detailed cal-
culations. The volumes were of cubical form consist-
ing of the central cube, the inner cube and the external
cube as shown in Fig. 5. In fact, a “margin” of 10r was
necessary to simulate an infinite medium for the bor-
der voids (interacting with the voids located outside
the cube ¢ in Fig. 5) of the central cube, thus forming
the inner cube. A supplement “margin” of 5r was
necessary to avoid the border effects due to the ran-
dom distribution leading to the external cube. Indeed,
if spheres are randomly placed in a finite volume, the
local volume fraction will alter slightly inside the cube.
As the volume fraction is zero outside the cube, it
becomes easier to place spheres near the border. Con-
sequently, this leads to a locally higher volume frac-
tion in the external cube.

We have examined several distributions, and found
that a distance 5r was sufficient practically to render
the distribution random inside the central cube and to

overcome the border effects. Thus it became possible
to simulate random distributions with up to 150
spheres. For the typical example of Fig. 6, the central
cube contained 138 voids of radius r in a volume of
(18r)*, which gives a volume fraction of pores, of
9.94%. The inner cube of interactive voids of volume
(38r)* contained 1292 voids and the external cube of
volume (48r)* contained 2613 voids. Because of the
minimum distance [ = r separating voids owing to the
weakness of the zero-order approximation, we were
not able to simulate a higher volume fraction of voids
(typically more than 10%). It is clear from Fig. 6,
where the six faces of the central cube are shown, that
the particles display a random distribution and that
there are many spheres at a distance of [,;, to 1.11;,
from the nearest neighbour sphere. The mean sphere
inter-distance is 1.13r.

4.2. Distance of mechanical interaction

It is obviously impossible to take into account an
infinite number of inhomogeneities in a single compu-
tation by using Equation 1. Each inhomogeneity gave
rise to a particular computation. The number of prob-
lems to solve was the same as the number of in-
homogeneities in the central cube. The computation
concerning a reference void involved all the voids
located in a sphere of radius d centred at the reference
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Figure 5 Schematic representation of the three volumes containing spheres of different interest: (a) volume excluded to avoid border effect of
the random distribution in a finite volume, (b) volume containing inhomogeneities taken into account in the interaction computations, and (c)

volume where the strains inside each inhomogeneity are computed.
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Figure 6 Typical example of the distribution of 138 spheres contained in a cube. The six faces of the cube are visualized and the darkness of

the spheres indicates the proximity of the nearest sphere.

(Fig. 7). The distance d (centre to centre) of active
interaction was chosen by the user. The limits of
our computers (computation time and memory size)
did not allow us to use values of d greater than
typically 10r.

We varied the distance d from 3r to 10r. The solu-
tion obtained for 10r was taken as reference. We
compared the differences between the €f relative to the
maximum component of the applied strain tensor at
infinity. The loading was always a uniaxial tension
along the z axis. The difference, A, with respect to the
reference solution is then

A = maxi{[el(d) — €] (10r)]/e*} 2)

where €f(d) is the solution obtained for the in-
homogeneity p with an active interaction distance d.
The maximum is searched over the six components
of the strain tensor and the total number of in-
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Figure 7 Schematic representation of the sphere inside which all
inhomogeneities interact with each other and with the reference
sphere to compute the strains of the homogeneity located at
the centre.

homogeneities. The plot of A versus d/r in Fig. 8
indicates that A < 5% when d/r > 8. We then con-
sidered that d/r should be greater than 8 to take into
account the most significant interactions. One can
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Figure 8 Evolution of the solution versus the active interaction
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Figure 9 Statistical distribution of von Mises stress concentration
factors (—) 87 voids, (----) 100 voids, (——-) 100 voids, (—-—) 138 voids.

also conclude that for our spatial distributions
(Inin =71, V"< 10%) a void does not interact with
others located at a distance greater than approxim-
ately 10r.

4.3. Distribution of stresses in porous
materials

In porous materials, the presence of voids induces
stress concentrations. In many polymers, plasticity or
crazing develop at the vicinity of inhomogeneities and
in porous polymers voids can grow and coalesce. It
was then our purpose to analyse the appearance of
plasticity and the consequences of the interactions
between voids on the stress concentrations. The ap-
pearance of plasticity is generally well described by
a von Mises criterion in these materials. For the sake
of simplicity, the dependence of the yield criterion on
the hydrostatic stress is neglected. Thus, it was pos-
sible to compute the stresses around the particles to
find the maximum von Mises equivalent stress, t,. The
location of the maximum value of t, was searched
around the particle with an accuracy in angle of 1°.
Fig. 9 shows the statistics of the distribution of t,. It is
noticeable that the mean value of the stress concentra-
tions is a few percent greater than the exact value for
a single void in an infinite matrix [ 39, 43]. The effect of
mechanical interaction globally increases 1, and the
appearance of plasticity is encountered for a lower
external loading. Practically, the yield stress of the
material decreases when interaction is present.

The numerical simulations of the stress distibutions
were carried out on porous materials submitted to
uniaxial tension. We have chosen a high value for the
interaction distance, d, thus allowing the multiple

L OE0E = B
#E0w 0 +TOx10"
SRS TR [T T T
LR et BT
B se0=10"s18x10"
B o010 e ™
. PR P e P r o
W #1310 s 3amt
FRELE EiL N
B o son”

Mirmumes-1881 o0
Muctimmum-2.182 = 10 »
s + BB TAE =10
TRETIREN Ty

138 woade

feac wil, = 70F%

Figure 10 Stress distribution of o33 at a constant value of z for a sample containing 138 voids subjected to a tensile deformation

of 1%.
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interaction of voids to be taken into consideration and
to minimize the difference to the reference solution as
discussed above. A typical example of the stress distri-
bution in the z-direction, ¢33, at a constant value of
z is shown in Fig. 10 for a sample containing 138 voids
subjected to a deformation of 1%. Clearly, a large
number of points is observed, where the stress is com-
pletely released. These points correspond to locations,
where a void can be found either closely below or
above the plane at the considered value of z. This
picture also demonstrates the importance of the inter-
action of voids on the stress concentrations. If the
distance between two neighbouring pores, is large, no
increase in stress concentration is observed. However,
if several voids are located very close to each other, the
interaction leads to the build-up of internal stresses,
which are considerably higher than the imposed load-
ing. This observation is also confirmed, if one plots the
normalized von Mises stresses, for the same condi-
tions (Fig. 11). Again, a large number of points can be
recognized, where the stress is released and, on the
other hand, a considerable number of regions is seen
where the von Mises stress becomes twice the value of
the external loading. Those regions will lead to an
effective lowering of the onset of plastic deformation,
representing the yield point. The calculations predict
the plasticity to appear locally for macroscopic load-
ings which are by a factor of about 1.7-2.3 lower than
the yield stress of the neat matrix. The normalized
distribution of stress concentration seems to be insig-
nificantly influenced by the volume fraction of pores in
the range 2%—-10%. The volume fraction of pores is
obviously related to the total volume of plastically
deformed material.

5. Discussion of experimental results and

theoretical predictions
In order to check the validity of the numerical simula-
tions, we have prepared porous epoxies via the chem-
ically induced phase separation (CIPS) technique.
This results in the formation of a closed porosity with
a narrow pore-size distribution centred around
1.5-5 um diameter depending on the initial solvent
concentration. The phase separation proceeds via
a nucleation and growth mechanism and not via
spinodal decomposition [32]. Thus the domains tend
to take the shape which offers the highest volume to
surface ratio. Therefore, the pores are nearly spherical,
as it can be clearly seen from Fig. 12, which shows
scanned electron micrographs of macroporous ep-
oxies prepared via CIPS with different amounts of
cyclohexane. It can be clearly seen, that the macro-
porous epoxies display a very narrow size distribution.
The statistical distribution of the voids coincides with
the random distribution of the model system.

The structural characteristics can be controlled over
a wide range depending on the curing temperature, the
chemical nature of the solvent and its concentration
[32]. For our experiments, we have chosen cyc-
lohexane as the solvent and kept the curing temper-
ature constant. Consequently, the morphological
characteristics depend only on the initial solvent con-
centration. At a curing temperature of 80 °C, a phase
separation resulting in the formation of white, opaque
samples is observed at concentrations equal to or
higher than 16 wt % cyclohexane. Only part of the
initial solvent is involved in the phase separation
process. A considerable amount remains soluble in
the cross-linked material. An increase in solvent
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Figure 11 Von Mises stress distribution at a constant value of z for a sample containing 138 voids subjected to a tensile deformation

of 1%.
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Figure 12 Scanning electron micrographs of macroporous epoxies
prepared via chemically induced phase separation with various
amounts of cyclohexane: (a) 16 wt% cyclohexane, (b) 20 wt %
cyclohexane.

concentration leads to an increase in the pore size and
also in the volume fraction as can be clearly seen from
Fig. 12. The structural characteristics such as pore
size, inter-pore distance (IPD) and volume fraction are
reported in Table I. The porosity has been determined
from density measurements after the drying proced-
ure. The drying was performed by heating the samples
above the ultimate T, and the complete drying has
been checked by thermogravimetric analysis.

Typical results of stress deformation curves under
uniaxial compression of the neat matrix material and
a porous epoxy prepared with 20% cyclohexane, thus
exhibiting a porosity of around 13%, are plotted in
Fig. 13. In these curves, three different regions can be
mainly distinguished. In the early stage of deformation
the material shows an ideally linear behaviour. The
modulus, given by the slope in this early stage of
deformation, decreases as a consequence of the gen-
eration of a porous morphology. The onset of plastic
deformation leads to a deviation from the linear be-
haviour. It is concluded from the zero-order model
that the shear banding starts at a limited number of
voids (< 5%), which satisfy the yielding criterion. As
the external load increases further, in the second re-
gion, the stress concentrations in the material become
more important, involving a continuously increasing
number of pores to fulfill the yielding criterion. As the
stress concentrations exceed the yield stress in the
entire material, extensive plastic deformation takes

TABLE 1 Morphological characteristics of macroporous epoxies
used for compression testing

Cyclohexane Density after Porosity  Pore IPD
(Wt%) drying (gecm™3) (%) diameter  (um)
(pm)
0 1.123 - - -
16 1.1 2.05 1.3 2.5
18 0.982 12.6 4.4 2.7
20 0.975 13.2 4.9 29
22.5 0.935 16.7 5.3 24
25 0.94 16.3 6.6 3.1
5
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Figure 13 Load-displacement curves under uniaxial compression
for (a) the next epoxy and (b) macroporous epoxy prepared via
CIPS with 20 wt % cyclohexane.

place in region 3. Our calculations were limited to the
elastic behaviour. Therefore, in the following dis-
cussion, the onset of plastic deformation will be taken
as a comparative value for the yield strength, o, and
not the stress at the onset of extensive plastic deforma-
tion, o,. Fig. 14 shows the experimental data of the
yield strength, &, as well as 6, in comparison to the
values calculated from the zero-order model. Even
though the concentration of solvent has been varied
stepwise with steps of 2%, a drastic difference in por-
osity is obtained for samples prepared with 16 and 18
wt % cyclohexane. Thus, for this particular system, no
porous epoxies could be prepared with the CIPS tech-
nique with porosities in the range of 2%—-10%. On the
other hand, the calculations were limited to 10% por-
osity. The calculations based on the zero-order model,
with the restriction of a separating distance between
voids of at least one radius, predict a decrease in yield
strength to around 45%-55% of the value for the neat
matrix independent of the degree of porosity. The
experimental values for the yield strength, taken as the
first point of deviation from the linear behaviour, as
discussed above, are somewhat higher than the pre-
dicted values. However, if one compares the strength
at the onset of extensive massive plastic deformation,
G, to the theoretical predictions, it is confirmed, that
the theoretical and experimental values are in good
agreement (Fig. 14).

On-going work is dedicated to improve further our
micromechanical model for simulation of several
interesting morphologies, such as bimodal pre-size
distributions and compare these results with data
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Figure 14 Comparison of theoretical predictions and experimental
results for the lowering of yield strength, ,, and stress at the onset
of extensive plastic deformation, c,, obtained from macroporous
epoxies prepared via CIPS and related to the values of the neat
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obtained from tensile tests on macroporous epoxies
exhibiting morphologies in better agreement with the
calculations. The equivalent inclusion method [40] rep-
resents a possible way to minimize the separatingdis-
tance between voids, thus rendering the simulation
closer to the real morphology.

5. Conclusion

The spatial distribution of inhomogenities such as
voids is a key parameter for the material toughness
modification. A technique based on Eshelby’s model
has been proposed to analyse the effects of mechanical
interaction on the onset of yielding in a porous mater-
ial. It has been shown that the mean stress concentra-
tion factor is greater than that obtained for an isolated
void owing to the multiple interactions. These theoret-
ical predictions are in agreement with experimental
results obtained on porous epoxies prepared via the
chemically induced phase separation technique, thus
exhibiting a morphology similar to the model used for
the calculations. However, as the present model did
not allow a separating distance between voids smaller
than one radius of a void, it is expected, that the
calculated mean values are lower than those which
would be obtained for a random distribution of voids
without the restriction of a separating distance. There-
fore, a refined model based on the equivalent inclusion
method will be developed.
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